Arbitrary order Krylov deferred correction methods for differential algebraic equations
نویسندگان
چکیده
In this paper, a new framework for the construction of accurate and efficient numerical methods for differential algebraic equation (DAE) initial value problems is presented. The methods are based on applying spectral deferred correction techniques as preconditioners to a Picard integral collocation formulation for the solution. The resulting preconditioned nonlinear system is solved using Newton-Krylov schemes such as the Newton-GMRES method. Least squares based orthogonal polynomial approximations are computed using Gaussian type quadratures, and spectral integration is used to avoid the numerically unstable differentiation operator. The resulting Krylov deferred correction (KDC) methods are of arbitrary order of accuracy and very stable. Preliminary results show that these new methods are very competitive with existing DAE solvers, particularly when high precision is desired.
منابع مشابه
Semi-implicit Krylov deferred correction methods for differential algebraic equations
In the recently developed Krylov deferred correction (KDC) methods for differential algebraic equation initial value problems [33], a Picardtype collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using Newton-Krylov methods. KDC methods have the advantage that methods with...
متن کاملSemi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations
In the recently developed Krylov deferred correction (KDC) methods for ordinary differential equation initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a Newton-Krylov method. Existing analyses show that these KDC methods a...
متن کاملAn enhanced parareal algorithm based on the deferred correction methods for a stiff system
In this study, we consider a variant of the hybrid parareal algorithm based on deferred correction techniques in order to increase the convergence order even for the stiff system. A hybrid parareal scheme introduced by Minion (2011) [20] improves the efficiency of the original parareal by utilizing a Spectral Deferred Correction (SDC) strategy for a fine propagator within the parareal iteration...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملAccelerating the convergence of spectral deferred correction methods
In the recent paper by Dutt, Greengard and Rokhlin, a variant of deferred or defect correction methods is presented which couples Gaussian quadrature with the Picard integral equation formulation of the initial value ordinary differential equation. The resulting spectral deferred correction methods (SDC) have been shown to possess favorable accuracy and stability properties even for versions wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 221 شماره
صفحات -
تاریخ انتشار 2007